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SUMMARY 

This paper describes a domain decomposition numerical procedure for solving the Navier-Stokes equations 
in regions with complex geometries. The numerical method includes a modified version of QUICK 
(quadratic upstream interpolation convective kinematics) for the formulation of convective terms and a 
central difference scheme for the diffusion terms. A second-order-accurate predictor-corrector scheme is 
employed for the explicit time stepping. Although the momentum equations are solved independently on 
each subdomain, the pressure field is computed simultaneously on the entire flow field. A multigrid 
technique coupled with a Schwarz-like iteration method is devised to solve the pressure equation over the 
composite domains. The success of this strategy depends crucially on appropriate methods for specifying 
intergrid pressure boundary conditions on subdomains. A proper method for exchanging information 
among subdomains during the Schwarz sweep is equally important to the success of the multigrid solution 
for the overall pressure field. These methods are described and subsequently applied to two forced 
convection flow problems involving complex geometries to demonstrate the power and versatility of the 
technique. The resulting pressure and velocity fields exhibit excellent global consistency. The ability to 
simulate complex flow fields with this method provides a powerful tool for analysis and prediction of mixing 
and transport phenomenon. 
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1. INTRODUCTION 

Practical and engineering problems in computational fluid dynamics inevitably involve complex 
geometries. Separation, recirculation and reattachment characterize the general flow structures 
found on uneven flow boundaries. Sophisticated computational methods are increasingly import- 
ant for the prediction of flow fields and for the analysis of mixing and heat transfer in regions of 
flow separation and recirculation. Bhatti and Aung ’ used a hybrid/central differencing scheme to 
conduct a comprehensive numerical analysis of the two-dimensional forced convection heat 
transfer in horizontal open cavities. Sparrow and Chuck2 employed a similar technique to 
investigate a two-dimensional channel flow with asymmetric abrupt enlargement on an IBM PC. 
Tamura3 used a co-ordinate-mapping method to study the aerodynamic behaviour around a 
square bluff body at high Reynolds numbers. A popular approach employed to treat this type of 
irregular domain is to use a ‘blocking-off’ operation4 to inactivate some of the control volumes of 
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the regular grid so that the remaining active control volumes form the desired irregular domain. 
This approach, while convenient, is wasteful of CPU time and computer storage. Co-ordinate 
mapping is sophisticated, but it often becomes cumbersome because extraordinary operations on 
the governing equations are required. Moreover, some geometries, including the relatively simple 
ones considered in this paper, are difficult to map into a simple domain. The viability of the 
aforementioned methods diminishes when the flow domain is long, narrow and/or winding (such 
as a Z-shaped). 

Domain splitting turns out to be simpler to implement, computationally more efficient and 
more versatile in regions of cut-outs and bends than partial domain inactivation. Furthermore, 
with the advent of parallel processors in modern computers, techniques of parallelizing computer 
codes have gained ever-increasing popularity in various computational fields. Domain decompo- 
sition techniques hold great promise for being able to take the advantage of parallel computation 
capabilities so that complex flow problems can be solved far more efficiently. This paper describes 
a coupled 'multigrid4omain-splitting' technique using an explicit, second-order-accurate 
predictor-corrector time-marching scheme with modified QUICK/central difference formula- 
tions which yields accurate flow fields. 

A number of works on the subject of domain decomposition have appeared in the literature. 
Some deal with linear single-equation models to study characteristics of various methods; some 
applied the relevant principles to a system of coupled non-linear partial differential governing 
equations. Oliger et aL6 used a Poisson equation to delve into the Schwarz alternating principle 
on overlapping grids and explore ways to accelerate its convergence. Henshaw and Chesshire' 
applied a multigrid method to solve a Poisson equation with periodic and Dirichlet boundary 
conditions on general composite overlapping meshes. Good convergence rates were obtained 
with the methods described therein. Meakin and Street" combined boundary-conforming 
co-ordinate and domain decomposition principles to solve three-dimensional environmental 
flow problems. Caruso'o used adaptive grid calculations (which require multiple, intersecting 
domains) to simulate two-dimensional elliptic flows. Implicit schemes which take each sub- 
domain as an individual unit are used and, subsequently, Schwarz-like iterative methods were 
employed to sweep through all the subdomains, while a line-by-line method was used for 
relaxation within each region. Each iterative sweep needs recalculations of the momentum and 
pressure equations on an individual subdomain. 

The strategy employed in this study is in sharp contrast to traditional implicit schemes in many 
ways. The treatment of the pressure field and its boundary conditions is crucially important to the 
success of the explicit scheme in solving decomposed flow domains. Instead of being treated as a 
local property to each individual domain, the pressure field is viewed as a global property of the 
entire flow field and is treated as a whole in this paper. Once the momentum equations have been 
calculated on each subregion, the relevant information is incorporated into the source terms of 
the pressure equation. We then employ a multigrid technique together with a Schwarz-like 
iterative method to sweep through subregions to solve the pressure equation. The pressure field 
obtained in this way is globally consistent over the entire flow domain. There are advantages 
to this technique. First, the momentum equations are calculated only once for each stage of 
predictor and corrector, unlike implicit methods which need to recalculate these equations for 
each iterative sweep; therefore our technique involves far fewer algebraic operations within each 
time step. Secondly, since the pressure field is treated globally, the resulting velocity field retains a 
global consistency on each subdomain. As a consequence, the velocity profiles in overlapping 
zones of different subdomains match perfectly. Finally, the global pressure field is very efficiently 
solved by the multigrid solver. Therefore the entire computational procedure is accurate as well as 
cost-effective. 
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Because more general (irregular or curvilinear) domains can be reduced by co-ordinate 
mapping and domain decomposition to a set of intersecting rectangular it is not 
necessary to deal with irregular or curvilinear domains to demonstrate our method. The 
illustrative configurations considered in this paper include a square insert located at the lower left 
corner of a square driven lid cavity, and a two-dimensional channel with abrupt enlargement and 
contraction at bends. The results are presented using particle track plots which clearly show 
pronounced flow structures such as primary and secondary recirculating eddies and regions of 
separation and reattachment in the flow field. This paper proceeds by discussing, first, the 
numerical methods, secondly, the multigrid technique and its implementation to composite 
domains and, thirdly, the results of numerical computation. Finally, conclusioni are summarized. 

2. NUMERICAL METHODS 

2.1. Governing equations 

The governing equations together with discretizing methods, modified QUICK, solution 
algorithm and notations for the explicit scheme have been previously described in Reference 5; 
only relevant procedures are elaborated in this paper. Briefly, in this study we use a volume- 
averaged formulation to solve a weak form of the two-dimensional Navier-Stokes equations in 
primitive variables on a staggered grid system in Cartesian (x, y )  co-ordinates. The equation for 
pressure P is obtained by substituting u- and u-velocity components into the discretized 
continuity equation. This procedure represents a combination of conservation of momentum and 
mass. 

Throughout this study the flow is assumed to be two-dimensional and laminar. The final 
discretized momentum equations for a uniform mesh take the following forms for the explicit, 
second-order-accurate predictor-corrector time-stepping scheme : 

predictor 

u;; 112 = u; + FXYj + - A t  ( P i j  - Pi+ 1, j).+ 1'2,  

2 p  A x  

corrector 

A t  v n + l  - n 
ij - uij + F Y y  + ~ (Pi, j - Pi, j +  1 )n+l;  

PAY 
where 

Fyn+"- 112 = PA VP 

(3) 

(4) 
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Here tf is a time factor; t, = 1/2 for the predictor stage and tf = 1 for the corrector. The A,, are the 
influence coefficients resulting from discretization of the momentum equations. The subscript 'np' 
denotes a neighbour of a centre node ' P  and the summation is taken over all four neighbours in 
the 2D case; b t  and b,* are the appropriate source terms in the discretized momentum equations. 

The predictor-corrector scheme employed in this work uses a combination of two explicit time 
steps. However, for convenience of explanation, a two-dimensional incompressible flow with 
explicit Euler time marching is used for illustration in this section. Then, equations (1H4) are 
simplified and become 

Continuity requires a divergence-free flow field for time step ( n +  l)At, i.e. 

[ ~ i j -  ~ i -  1, j ] " + ' A y  - [ ~ i j -  ~ i ,  j -  11"' ' A X  = 0. (9) 
By substituting equations (7) and (8) in equation (9), after some manipulation one obtains the 
discretized pressure equation 

The right-hand side of equation (10) contains the source terms of the pressure equation. They 
consist of flow variables at time step nAt and are known. By appropriately specifying pressure 
boundary conditions at time step ( n +  l)At, one can solve equation (10) by any standard method. 

2.2. Boundary conditions for the pressure equation 

2.2.1. On a physical boundary. Equation (10) is valid for interior as well as for boundary nodal 
points provided that one can calculate the terms FX and F Y on the boundaries. For example, in 
Figure 1 at node (2, j )  on domain 2, equation (10) becomes 

Node ( 1 , j )  is a boundary point, but all other indices are for interior nodal points. Additional 
information is generally needed for the determination of pressure boundary conditions. A concise 
and surprisingly simple approach occurs when the normal velocity components on the boundary 
are known. In this case, at node (2, j ) ,  equation (9) becomes 
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Consequently, by substituting equations (7) and (8) in equation (12), one obtains the counter part 
of equation (1 1): 

known 

We can see that the boundary pressure Pl;; associated with the prescribed ul;: does not 
appear in the above equation, which means that no information about PI, is needed in this case. 
Perhaps it is of interest to examine how this approach works at the corner node, sqy (2,2) on 
domain 2. By the same procedure one obtains 

(14) 
P P 

At  =- { C U 2 , 2  +FX2,2l"AY + b 2 , 2  +FY2,2I"AX) +L\t C U 1 , Z A Y  +u2, lAxl"+l - - 
known 

It is easy to see that we do not need to specify Pl?; and P;:: in equation (14). Obviously, 
whenever the normal velocity components on the boundary are prescribed, the associated 
pressure nodes just outside the boundary do not appear in the discretized pressure equation (10). 
Thus, if velocities can be correctly specified, the corresponding pressure differences are not 
necessary in the pressure equation. However, the net effect of this approach is to require the 
satisfaction of the well-known compatibility condition for an incompressible flow, which requires 
the volume integral of the source terr s in the pressure equation to be equal to zero so that a 
converged solution to that equation can be obtained. These results can also be derived by 
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application of the original differential equations for momentum and mass conservation in a limit 
process at a physical boundary, leading to the Neumann boundary condition for the pressure. 

2.2.2. On an interior boundary: the impact of domain decomposition. Here we discuss the 
domain decomposition technique. If we examine equations (7H10) closely, we find that all the 
information needed to solve the momentum equations at time (n+ 1)At is readily available from 
previous calculations at time nAt. For this reason the momentum equations can be treated 
independently on each subdomain. However, when the pressure equation is solved, velocity 
components normal to flow boundaries at time ( n +  1)At are needed. If the flow boundary is a 
physical one or the normal velocity component at (n + l ) A t  can be correctly specified, the 
pressure equation can be solved on each subregion independently; but on non-physical bound- 
aries of subregions inside the flow domain, neither P"" nor Vn+l  can be correctly specified. 
Traditionally, implicit schemes are used to deal with this problem. Velocities on non-physical 
boundaries of the subdomain under consideration are taken from appropriate intersecting 
subdomains. The solution procedures then proceed with some kind of Schwarz sweep* through 
every subdomain until convergence is r ea~hed .~  Each iterative sweep typically requires solution 
of the momentum equations and a Poisson-type pressure equation on each region. Because 
boundary velocities are respecified at each iteration, no pressure boundary condition is necessary 
for the implicit approach. Here each subdomain is solved independently. However, by using 
information available in the overlapping zones, we can connect the individual pressure fields into 
a global one. That is, instead of solving the pressure for each subdomain independently, one treats 
the pressure as a global property of the entire flow field. The resulting pressure gradients and 
pressure values are smooth over the computational domain and mass conservation is consistently 
maintained. 

Recall that equation (10) is valid for both interior and boundary nodes. Note also that in 
Figure 1, because of the staggered grid system, nodes a and jl are for scalar quantities, such as 
pressure and temperature, and node y is for vector quantities (0-velocity in this example). Node a 
is both a boundary node ( i ,  1) to domain 1 and an interior node to domain 2. The vertical 
boundary velocity of region 1, ui, sits at nodes y. We can apply equation (10) to the nodes across 
the open boundary on domain 1. Two more pieces of information need to be provided in order to 
solve the pressure equation of domain 1, namely 

(i) the value of ( u  + FY);, 1, which is not calculated in the discretized momentum equations on 

(ii) the relation between PI, and Pi, z. 
Since ( u  + FY):, is only computed for the interior nodes on each subdomain, the value of 

( u  + F Y)" on a boundary node, say (i, 1) on domain 1, is available if that node is also an interior 
one in another subdomain. Therefore an overlapping zone should be provided as a common 
region for intersecting subdomains, so that whenever information is needed it can be computed 
from the solution field in the other subregion. In this way, obtaining the above two pieces of 
information becomes surprisingly simple. For example, at the vector node ( i ,  1) (i.e. node y )  on 
domain 1, although ( u  + FY);, is not calculated in this domain, it is computed at an interior node 
in domain 2 and can be directly used in equation (10) on the open boundary of domain 1. 
Moreover, since the pressure gradient is needed to compute the velocity field, Pi, and Pi, can be 

the domain, and 

* In the Schwarz alternating method6 the subdomains are decoupled by using current results in one subdomain to specify 
necessary boundary conditions on other related subdomains. Then the solution is obtained by solving the problem on 
each subdomain sequentially, cycling through them until convergence on all domains is obtained. 
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related by taking the same pressure gradient across nodes CI and f l  on the two domains. The 
boundary condition on the non-physical boundary thus remains a Neumann type. An alternative 
to get Pi, is using pressure values directly on the corresponding nodes in another subdomain, i.e. 
take it directly from node 01 on domain 2. In this way the pressure boundary condition becomes a 
Dirichlet type at a non-physical boundary in an intersecting interior domain. As might be 
expected, it takes fewer iterations for convergence if a Dirichlet rather than a Neumann condition 
is enforced. 

Any classical iterative scheme can be used to solve the pressure equation on each subregion. 
Since the multigrid method has emerged as one of the most promising iterative techniques for 
elliptic partial differential equations, with appropriate treatments on intergrid information 
exchange, we implemented the MG technique in the current code. 

Because either pressure gradients or pressure values across the domain boundaries in the 
overlapping zones are used to transmit information between grids, a global sweep through all the 
subdomains is required. In this work we perform a Schwarz iterative sweep on one subdomain 
after another until global convergence is achieved on all subdomains. 

2.2.3. Pressure values versus pressure gradients. As mentioned earlier, either pressure gradients 
or pressure values across the boundary of overlapping subdomains can be used to relate the 
pressure boundary condition of the two subregions. The question is which choice will be more 
efficient or more appropriate. If the mesh sizes of the overlapping domains are the same, the 
pressure as well as velocity nodes on the two subdomains match exactly. It is more convenient 
and computationally more efficient to use pressure values directly for the boundary node. 
However, if the mesh sizes of the overlapping subdomains are different, say Ax, = 2 A x ,  as shown 
in Figure 2, it would be advisable to use the same pressure gradients across the boundary. There 
are two reasons underlying this choice. First, in a staggered grid system the pressure gradient 
across two adjacent nodes serves as a driving force to induce the flow velocity between them. 
Since the velocity U is the same for both subdomains, physically we expect the same pressure 
gradient across the 'fine' and the 'coarse' meshes. Secondly, no interpolation scheme is required 
and no extraneous error is introduced by enforcing the choice of the same pressure gradient. 
However, if one wants to use a pressure value instead, an appropriate interpolation scheme must 
be chosen to accomplish this purpose. Linear interpolation tends to introduce an error larger 
than the truncation error of the finite difference schemes employed, while higher-order inter- 
polation schemes might produce unphysical wiggles; the solution accuracy is thus compromised. 
It is a good practice not to use extra interpolation schemes when they can be avoided; using 
pressure gradients for different mesh sizes serves this purpose. 

2.2.4. The size of the overlapping zone and conservation of quantities. The overlapping zone for 
intersecting subdomains should be only large enough to accommodate all nodal points required 

I - ' U  

A I B  
Y .. .. .. . " ^ . "  I * " 

AX, = 2 A X ,  

Figure 2. Overlap of coarse and fine grids in a buffer zone 
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for providing necessary information. Too broad an overlapping zone will not harm the calcu- 
lation, but it wastes CPU time and other computer resources. 

The size of the overlapping zone depends on the choice of schemes one uses for the 
formulations of spatial derivatives in the Navier-Stokes equations. For example, if a second- 
order central difference scheme is used to represent the diffusion terms and HYBRID is used for 
the convective terms, two grid space widths are sufficient for the overlap zone; if one uses 
QUICK,12 the zone must be at least three grid spacings wide owing to additional terms which 
appear in the QUICK formulation. Regardless of the choice of scheme, however, information at a 
node on a non-physical boundary of one subdomain must be calculated from the solution on an 
intersecting domain in which that node is an interior point. 

As pointed out by Patankar? the most attractive feature of the control volume formulation is 
that the integral conservation of mass, momentum and energy is exactly satisfied both locally and 
globally. Also, recall that the pressure equation (10) is obtained by substituting the momentum 
equations into the continuity equation. Solution guarantees conservation of mass within the 
accuracy of the solution algorithm. 

2.2.5. Algorithm of the technique. We have been using the explicit Euler scheme in previous 
subsections for the convenience of explanation. In reality we used a predictor-corrector scheme 
for time stepping. The only change required is to include proper values for the time factor tf in the 
equations at each of the predictor and corrector stages. The algorithm for solving the coupled 
(u, u and p) equations can be summarized as follows. 

1. Split the entire irregular domain into several regular subdomains with an appropriate 
overlapping zone between any two overlapping subdomains. 

2. Calculate the momentum equations on each subdomain using equations (5 )  and (6) with 
dependent variables at time nAt and set t f =  1/2. 

3. Readjust the boundary values of ( u + F X ) "  and (u+FY)" on each subregion by using 
information made available on the appropriate overlapping zones. 

4. Apply the Schwarz iteration to cycle through all the subdomains (global iteration) while 
using SOR, LSOR or MG to sweep over nodal points on each subregion (internal iteration) 
to calculate the global pressure field (equation (10)) at time (n  + 1/2)At. The aforementioned 
pressure boundary conditions should be applied at this step. 

5. Update the velocity field at time (n+ 1/2)At by substituting the pressure field obtained at 
step 4 in equations (1) and (2). 

6. Recalculate FX and F Y  on each subdomain using equations (5 )  and (6) with t,= 1. 
7. Readjust the boundary values of ( u + F X ) " + 1 / 2  and ( O + F Y ) " + ' / ~  on each subregion. 
8. Repeat step 4 to solve for the global pressure field at time ( n +  1)At. 
9. Update the velocity field at time ( n + l ) A t  using the pressure field obtained at step 8 to 

There are two advantages to this technique. First, the momentum equations are solved only 
once on each subregion for each stage of predictor and corrector. Once the information from the 
momentum equations has been computed, it is then incorporated into the source terms of the 
pressure equation and we solve for the pressure field. In contrast, in addition to global iterations 
(Schwarz iteration over every subdomain), implicit methods require both external sweeps 
(iterations to cycle through momentum, pressure and energy equations) and internal sweeps 
(SOR over every node within each equation) on every subregion. Each such sweep requires 
recalculation of both the momentum and pressure equations on each domain. Furthermore, time- 
accurate solutions require that the local Courant number be of the order of unity; this in turn 

conclude one predictor-corrector time step. 
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limits the time step for a fixed grid system. Therefore our new approach of implementing an 
explicit scheme with a domain-splitting technique is comparatively cost-effective. (The superiority 
of using an explicit scheme over an implicit one for the sake of obtaining a time-accurate solution 
has been reported by Perng and Street.)' Secondly, since the pressure field is treated globally, the 
resulting pressure field varies smoothly over the whole computational domain, i.e. there is no 
mismatch either in pressure or in pressure gradients at the boundary of two intersecting 
subregions. As a result, the velocity extracted from this pressure field retains a global consistency 
and the velocity profiles in the intersecting zones of different subdomains match perfectly. 

3. MULTIGRID STRATEGIES 

In this section we review the basic concept of the multigrid technique and describe its imple- 
mentation to solve the pressure equation for incompressible flows in composite domains. 

3.1. Basic concept 

The multigrid (MG) method has been demonstrated as one of the most efficient iterative 
techniques for solving elliptic problem. The algorithm of the MG technique is to construct a 
hierarchy of grids with different mesh sizes. An appropriate relaxation scheme is used as the 
smoother on each level of grid to quickly reduce large amplitudes of high-frequency error 
components which cannot be well approximated on the next coarser grid. The 'smoothed' 
solution is then transferred to the next coarser grid to further eliminate error components with 
longer wavelengths. By employing several levels of grids, one is able to solve for the high- 
frequency components on a fine grid and for the low-frequency components on a coarse grid. As a 
result, the overall convergence rate is greatly accelerated. An excellent introductory discussion of 
the multigrid method can be found in Reference 13. A more complete introduction to the theories 
and analyses of the subject is documented in the book edited by Stuben and Tr~ttenberg. '~ 
References 5 and 15-21 are various applications of the techniques to solve the 
Navier-Stokes/Euler equations over some simple domains and are good sources to acquire 
acquaintance with the methods and applications to fluid dynamics. 

Since the discretized governing equation for the pressure equation is linear, both CS (defect 
correction scheme) and FAS (full approximation scheme) are equally applicable. However, the 
former needs less storage and contains fewer algebraic operation than the latter; therefore we 
focus our attention on the CS scheme in this paper. The overall procedure of the MG-CS scheme 
can be described as follows. We first construct a sequence of grids with mesh size h k  = h k -  1/2 for 
k = 2,3, . . . , m, where level 1 is the coarsest grid level and level m is the finest. We then devise two 
interlevel transfer operators I!- '  and known as a restriction operator, is used 
to map variables defined on grid level k onto grid level k -  1, and I : -  ', known as an interpolation 
operator, is used to transfer variables defined on grid level k -  1 back to grid level k. The solution 
procedure starts on the finest grid level k = m. We first rewrite the pressure equation as 

where 

Lhph = F h ,  (1 5 )  

where L' is a difference operator containing all the relevant coefficients in the pressure equation, 
Pk ( k = m )  represents the final converged solution to equation (15) and F' is the appropriate 
source term. Then we proceed as follows. 

1. Apply an appropriate smoother to equation (15) for a few iterations until the convergence 
slows down. One gets a defect solution, say p', to equation (15) and denotes V k = P k - p k  as 
the defect (error) value. 
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2. Switch to the next coarser level of grid, k- 1, and solve there the defect equation 

where Vk-' is the approximate value of the error V k  on the grid level k- 1. 
3. Apply the smoother to equation (16) and obtain an approximate solution uk- ' to it. At this 

stage some criteria are evaluated to determine whether to switch to coarser grids and repeat 
the above procedure or to interpolate u k - l  back to grid k and make corrections on p k  by 

Piew = P : , d + ~ : - l U k - ' ,  (17) 
where I i - l u k - l  is an approximation to the defect Vk on level k. 

4. Repeat the above steps until a converged solution on the finest level is obtained. 

From the above procedure we can see that we solve for the defect term on a coarse grid and make 
corrections on a fine grid. This is the basic idea of the MS-CS scheme. 

3.2. V-cycle and Convergence parameters 

Cycle is a term used to denote a specific pattern in which different levels of grids are cycled 
through and operated on by the chosen smoother. For example , in a V-cycle the process moves 
from the finest grid to the coarsest and back to the finest again. The cycle pattern can be either 
explicitly specified by the users or dynamically determined by the programme. By appropriately 
specifying the convergence parameters 6 nd q,' the MG algorithm will dynamically determine 
the patterns of the cycle. 6 is the parameter set up to determine the criterion of 'slow convergence 
rate' on a specific grid level. If the ratio of residual norms at two consecutive iterations is greater 
than 6, it is considered slow in convergence rate and the smoothing operation on this level should 
be terminated and switched to the next coarser level. q is used to determine when the solution on 
the coarsest grid level is converged and the solution procedure should return to the finer grid 
level. If the residual norm on the coarsest grid level has been reduced by a factor of q, convergence 
is considered to have been achieved. 6 = 0.6 and tj = 0-2 are commonly used for single-domain 
computation. Usually, smaller U-values result in a W-cycle. Generally speaking, the W-cycle 
performs better than the V-cycle on a simple domain. This is not necessarily the case for 
composite domains. In the current computer code we force the MG algorithm to perform a V- 
cycle by inserting a few statements in the programme. 

There is one additional observation worth mentioning. Instead of using a 6-value (such as 0.6) 
for the MG algorithm to dynamically switch a smoothing process to the next coarser level (it 
usually takes two sweeps on the current level before switching) as it does in a single-domain 
computation, one may force the MG algorithm to perform only one iteration on each level except 
for the coarsest one. This also means that only the q-value is used to determine the convergence 
on the coarsest grid. At least for the test composite-domain problems (Cases A and B in Section 
4), we observed that, by enforcing this strategy, a CPU time saving of 16% was obtained for the 
two-subdomain case (three levels of grids are used for each domain) and up to 20% was saved for 
the three-subregion case (four levels of grids are used) over the first 60 time steps from start-up. 
The saving occurs because performing more than one iteration on each level may or may not 
reduce the number of Schwarz sweeps; in the meanwhile, extra iterations require more algebraic 
operations in one V-cycle, leading to greater global computational costs. 

3.3. Smoothers and boundary interpolation 

The choice of an efficient smoother (relaxation scheme) for a particular problem can signific- 
antly influence the convergence rate of the MG iterations. A subdomain grid can be smoothed by 
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using any standard relaxation scheme. Experience shows that choice of a proper smoother is 
more or less problem-dependent. Furthermore, some robust smoothers may be able to achieve 
convergence within a few iterations, but each iteration contains a larger number of operation 
counts; some smoothers may need more iterative counts, but fewer operations are needed in each 
iteration. The current code used in this study has been programmed in such a way that a number 
of available smoothers can be invoked with only minor modifications. The smoothers include 
Gauss-Seidel, red-black relaxation, line Gauss-Seidel, alternating line Gauss-Seidel, zebra line 
smoother and alternating zebra line smoothers. One advantage of using the red-black or the 
zebra scheme is that they are fully vectorizable and parallelizable, thus taking full advantage of 
computers having vector or parallel processing capabilities.I6 

Three and four levels of grids are used in this study for different geometries. Test runs of current 
problems on a Cydra-5 mini-supercomputer show that Gauss-Seidel and red-black relaxations 
are almost equally efficient, while all the smoothers involving line relaxations consume more 
CPU time to bring the overall pressure field to convergence on the composite domains. It is noted 
that line relaxations and alternating line relaxations do have better performance when applied to 
a single (or simple) domain. The degrading of performance for line smoothers over composite 
grids may be attributed to the fact that the interpolation and exchange of boundary information 
among component grids cannot catch up with the convergence rate on each grid, which in turns 
increases the number of sweeps; each sweep of a line smoother contains more operations than 
point relaxations. Indeed, Stuben and Tr~ttenberg’~ noted that for ‘Poisson-like’ equations with 
five-point stencil, red-black relaxation probably yields the most efficient smoother of all. 

Interpolating and exchanging boundary information are of primary importance to the effici- 
ency of the composite-multigrid technique. Oliger et d6 pointed out that the number of iterations 
required by the ‘classic’ Schwarz alternating method (which drives the equations to a tight 
convergence on each subdomain before updating intergrid boundaries) to achieve global conver- 
gence depends on the amount of grid overlap and the number of subdomains. Meakin and Streetg 
conducted intensive numerical experiments on the subject, solving the Navier-Stokes equations 
on two overlapping subdomains in a driven lid cavity. They noted that the more frequently the 
information is exchanged among overlapping domains, the less expensive the corresponding 
global calculations are. Stuben and Trottenberg, on the basis of numerical experiments on a 
single Poisson equation with Dirichlet boundary condition, also indicated that the solution 
efficiency of a ‘naive’ combination of classic Schwarz iteration with multigrid techniques is limited 
by the convergence properties of the Schwarz method. They thus proposed a ‘direct’ smoothing 
strategy which updates intergrid boundary information right after every smoothing step on each 
subdomain. Their results showed that the convergence factors are insensitive to the amount of 
grid overlap. Henshaw and Chesshire’ followed the same guidelines on their test problems 
(solving a single Poisson equation over different composite grids) and reached similar conclu- 
sions. Because we are solving the Navier-Stokes equations, the information-swapping strategy 
employed in this study originally stems from Meakin and Street’s observations; it turns out to be 
similar to the idea used in References 7 and 14, but the implementation is different. 

Instead of interpolating boundary information right after smoothing a component grid on each 
grid level, we update intergrid boundaries on the component grid only at the stage after the MG 
procedure finishes one V-cycle on each subdomain and before it switches to the second finest 
level. The overall process can be summarized as 

(i) perform one MG V-cycle on first subdomain 
(ii) update intergrid boundary information 
(iii) perform one MG V-cycle on second subdomain 
(iv) update intergrid boundary information 
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and so forth. The major advantage of this approach is that interpolation and exchange of 
information only occur on the finest level; thus fewer algebraic operations are involved. In 
addition, one sweep of an MG V-cycle on a component grid can eliminate error components to 
some degree, and we exchange intergrid boundary information on the finest grid level (where we 
obtain the final converged solution) right after it finishes one V-cycle. The frequency of 
information exchange is thus at its highest possible rate. Therefore making use of the information 
from this partially smoothed grid reduces the total number of Schwarz sweeps and contributes to 
a better overall convergence rate. 

Since the pressure equation for incompressible flows is an elliptic one, the information within 
the computational domain is transmitted with virtually infinite speed. Therefore, in addition to 
updating intergrid boundaries as often as possible, the sweeping sequence over subdomains can 
also influence the computational expenses. If we liken each subdomain to a ‘single node’ in a 
simple computational domain, then a one-way sweep sequence (i.e. 123 . . . 123 . . . ) is equivalent 
to a kind of Gauss-Seidel sweep; new information from the previous subdomain is always used by 
the current subdomain. Since red-black relaxation is more efficient than Gauss-Seidel, we expect 
that red-black ‘sequence’ should also be so. Meakin and Streetg showed that the red-black sweep 
is slightly more efficient than the one-way sweep but far more efficient than the alternating sweep 
(i.e. 123 . . . 321 . . . ). Of course, there is no difference between the above two sweeping sequences 
for only two subdomains. In the test problem of a ]-shaped channel with three subdomains, we 
observed that the red-black sequence (i.e. 132132 . . . ) is indeed the best. About 8% of CPU time 
has been saved over the first 800 time steps from start-up. 

3.4. Restriction and interpolation operators 

The restriction operator is used to transfer variables on a fine grid to the next coarser grid 
whereas the interpolation operator is used to interpolate variables on a coarse grid to the next 
finer grid. Because of the staggered grid system used in this study, both operators are derived by 
using a bilinear interpolation.* Figure 3 shows the coarse and fine grid arrangement for a two- 
level MG computation. The pressure point sits in the centre of each cell and the fluxes are on the 
appropriate cell boundaries. Let ‘f‘ and ‘c’ denote fine and coarse grid points respectively and P be 
a general variable to be operated on by the restriction/interpolation operator. Then, for the 
interior nodal points, the restriction operator takes the form 

pic,  j c  = i CPif, jf + Pif + 1, jr + Pif, jf + 1 + Pir+ 1 ,  j f +  1 1 3  (18) 

where if=2ic-2 and jf=2jc-2. 
The interpolation operator takes the form 

Pif ,  jf = &Cgpic, j c  + 3Pic+l, j c  + 3Pic, j c + l  +Pic+l, j c +  1 1 ,  

Pif+ 1, jr  = ikC3Pic. jc +9Pic+ 1, jc  +Pic, j c + l +  3Pic+l, j c + l I ,  

Pif, jf+ 1 = kC3Pic, j c  + Pic+1, j c  +9Pic, j c +  1 + 3Pic+l, j c + l I ,  

Pif+  1, j f+ l  = kcpic, jc + 3Pic+l, j c  + 3Pic. jc+l+9Pic+l,jc+lI, 

(19) 

(20) 

(21) 

(22) 
with if=2ic- 1 and jf=2jc- 1. 

Since interpolation of intergrid boundary values takes place only on the finest level, not only 
should the pressure boundary conditions be properly specified as described in the previous 

* A biquadratic interpolation operator has also been tested by the authors. No major improvements on either the 
solution accuracy or the convergence speed were observed on the staggered grid system. 
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Figure 3. Fine and coarse grid arrangement for MG computation 

subsection, but an appropriate restriction operator is also required to transfer the boundary 
defect to the corresponding coarse grid. To be consistent with the interior scheme, the boundary 
defect is separately computed and then linearly averaged along the boundary lines to account for 
the boundary conditions on each level for each component grid. These ‘restricted’ boundary 
conditions remain unchanged and will be reinvoked again as the smoothing operator traverses 
back to this level from the coarsest grid of the same V-cycle. 

4. EXAMPLES AND RESULTS 

In this section we apply the coupled multigrid, domain-splitting technique to solve two forced 
convection flow problems with complex geometries. The first one is a square cavity isothermal 
flow with a square insert at the lower left corner; the second one is an isothermal flow in a two- 
dimensional channel with abrupt expansion and contraction at the two 90”bends. We regard 
these geometries as ‘complex’ because they cannot be easily mapped into a simple domain by 
standard co-ordinate-mapping methods. The time step A t  for each example is chosen such that 
the maximum local Courant number is smaller than 0.7 to ensure numerical stability.* The results 
are presented by using particle track and vorticity plots; typical velocity profiles across different 
sections of flow domains are also included so that major flow structures can be seen clearly. Note 
also that in vorticity and pressure contour plots, positive values are drawn with solid lines while 
negative values are drawn with dotted lines. Comparisons of CPU time required for using SOR 
on one ‘single’ level of fine grid (SG) and using the multigrid (MG) technique are listed to show the 
solution efficiency of the coupled multigrid4omain-splitting technique. 

* For the laminar flow calculations reported herein, the Courant limit is considerably more restrictive than the 
complementary diffusion time step stability limit. 
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4. I .  Physical examples 

4.1.1. Case A:Jiow in a driven lid square cavity with a square insert. The dimension of the 
square insert is one-half of the cavity width so that it blocks out exactly one-quarter of the cavity. 
The computational domain is divided into two subregions, one containing a 66 x 34 uniform grid 
and the other 34 x 38. Figures 4(a) and 4(b) show the particle tracks and vorticity respectively of 

P a r t i c l e  Trocks 

Figure 4(a). Particle tracks for a square insert in a cavity, (Case A), Re = 3200 

Vor t i c L t y  

Figure 4(b). Vorticity plot for a square insert in a cavity (Case A), Re=3200 
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the resulting flow field for Re = 3200 (based on the lid velocity and cavity width). From the figures 
we can see that the flow field exhibits global consistency over the entire domain; fluid particles 
travel smoothly in and out of the two split domains. Pronounced flow structures can also be 
observed. First, there are three primary recirculating cells occupying the three major portions of 
the cavity; three secondary eddies are formed at the three lower corners. Flow separations occur 
between each pair of primary recirculating cells and between primary and secondary eddies. 
Secondly, the primary recirculating cell at the upper right region stretches all the way across the 
width of the cavity beneath the driven lid and forms a kind of bicellular structure. This eddy plays 
an important role in the momentum transfer from the moving lid to the entire cavity; the other 
primary cells and secondary eddies are mainly induced by this one. 

4.1.2. Case B: a two-dimensional channelpow. The channel has two bends to form a Z-like 
shape. The channel undergoes an abrupt expansion and contraction in its width right at each 
bend. An expansion and contraction ratio of two is used for the configuration. Since the steady 
state flow field is of interest in this type of flow, fully developed boundary conditions are 
prescribed at the inlet and outlet of the channel. Since the velocities are known at the boundaries, 
the appropriate pressure equations are modified as in equation (13). The length between the inlet 
and the expansion section is taken to be twice the channel width so that the flow condition 
around the first bend will not influence the specified inlet velocity, while the length from the 
contraction section to the outlet is taken to be 10 times the channel width so that the flow can 
regain its fully developed stage at the outlet. The height of the expanded region is 5.625 times the 
channel width to provide enough room for observing flow structures developed in this section. 
The computational domain is decomposed into three subregions. The first ranges from the 
entrance to the downstream wall of the expanded region and the second covers the expanded 
region, ranging from the first bend to the second bend. The third domain is a counterpart of the 
first one; it contains the rest of the channel. The same mesh size is used in the three subdomains. 
The numbers of grids in the three subregions are 66 x 18, 34 x 66 and 194 x 18 respectively. 

Figure 5(a) shows the particle tracks of the resulting flow field. Since the main stream of flow 
undergoes dramatic changes in direction when passing through the expansion and contraction 
sections, interesting flow structures are developed in this region. As the main stream passes the 
expanded region, it induces a primary recirculating cell that occupies almost one-half of the 
expanded region, which in turn induces a weak secondary eddy at the lower left corner. Another 
secondary eddy is induced by the main stream at the upper right corner. The forming of the 
primary eddy has the effect of pushing against the streamline of the main stream flow near the 
contraction corner and narrowing its effective passage. As a result, the main stream of flow gets 
accelerated around the contraction corner and subsequently induces a comparatively large 
separation bubble along the upper wall of the contracted section. Figure5(b) displays the 
normalized streamwise velocities at several sections along the channel. From the two figures we 
can see that the flow preserves the specified parabolic velocity profile for some distance from the 
inlet, then begins to be disturbed by the effect of downstream expansion and bend and gradually 
changes its original shape. As the flow enters the contraction zone, it undergoes a redevelopment 
process and finally regains its perfect parabolic profile before reaching the exit of the channel. 

4.2. CPU time consideration 

Table I compares the computational costs for Cases A and B using single-grid and multigrid 
computations. The listed CPU time has been normalized by the number of time steps and the 
total grid points in the overall domain. In Case A three levels of grids are employed for the MG 
computation, while in Case B four levels of grids are used. For single-grid computations, point 
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P a r t i c l e  Tracks 
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Figure 5(a). Particle tracks showing flow field in a bending channel (Case B), Re=200 
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5(b). Normalized velocity profiles at different sections in a bending channel (Case B), Re = 200 

SOR iteration with an overrelaxation factor of 1.9 (the optimal one in the test runs) is used. All the 
calculations were carried out on a Cydra-5 mini-supercomputer at Stanford University. The 
comparisons are made based on the CPU time used over the first 60 time steps, which are 
equivalent to 120 calls to the pressure-solving routine owing to the predictor-corrector scheme 
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Table I. Comparisons of computational costs. SG, single grid; MG, multigrid 
~~ 

Level of Total node Fraction of CPU 
Problem grids points CPU (SG) CPU (MG) MG/SG 

Case A 3 3536 2.49 x 10-3 7.10 x 10-4 0.29 
Case B 4 6924 1.45 x 3.15 x 0.22 

employed in the solvers. The convergence criteria are that the overall residual mass be driven 
down to lop7 of the initial mass and that relative changes of pressure values in the overlapping 
zones be less than We can see that a significant amount of CPU time has been saved by 
applying the MG method for the solution of the pressure field over the composite domains. 

5. CONCLUSIONS 

A coupled multigridaomain-splitting method for simulating geometrically complex flows is 
described. The technique is validated by solving a model problem and subsequently applied to 
three examples of forced convection isothermal flows. A multigrid technique has been imple- 
mented to solve the global pressure field over the composite domains. The solution efficiencies of 
coupling an MG method with composite domains are demonstrated. The velocity and pressure 
fields obtained exhibit a global consistency over the entire flow domain. We have worked only 
with regions that can be decomposed into rectangular subdomains. Application of co-ordinate 
mapping can be used to reduce irregular subdomains to rectangles. Thus any flow in a complex 
irregular domain can be straightforwardly reduced to the type of cases studied here. The ability to 
build up complex flow fields in this simple manner provides a powerful tool for analysis and 
prediction of mixing and transport phenomena. 
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